Department of Toxic Substances Control Public Workshop

November 19, 2001

Purpose

- to promote pollution prevention, recycling and mercury alternatives by redefining mercury hazardous waste criteria
 - will provide safeguards from additional mercury environmental loading and protect public health and environment

Public Workshops

- to create a dialog with interested parties on our options for the proposed mercurycontaining waste
- four workshops scheduled statewide
- gather additional information and data

Mercury

- persistent and bioaccumulative
- uses
 - measurement devices, switches, thermostats
 - biocides, bactericides fungicides insecticides
 - some pharmaceutical products
 - industrial
 - amalgams
 - batteries

Mercury - State and National

- Water Quality Criteria (TMDLs)
- Toxic Air Contaminant
- Fish Consumption Advisories
- Mercury Product Restrictions/Bans

 Hazardous Waste Criteria Background

- 1977: guidelines initially drafted
- 1978: California Assessment Manual (CAM)
- 1982: public workshops initiated
- 1984: regulations were finalized

- Mercury and Hazardous Waste Management
 - today: change mercury hazardous waste identification criteria to promote pollution prevention, recycling, and mercury alternatives

• Draft Mercury Report - provides overview

- mercury in the environment land, air, water
- standards for the environmental important forms of mercury
- environmental and public health issues
- mercury chemistry and toxicology

• Draft Mercury Report - provides overview

- the global mercury cycle
- sources of mercury in the environment
- mercury uses and alternatives
- assessment of the waste contribution to mercury in the environment
- options to control waste sources of mercury

- CA Mercury Hazardous Waste Criteria (nonRCRA)
 - Soluble Threshold Limit Concentration
 - STLC
 - Waste Extraction Test (WET)
 - 0.2 milligrams per liter
 - Total Threshold Limit Concentration
 - TTLC
 - 20 milligrams per kilogram

- Federal Mercury Hazardous Waste Criteria (RCRA)
 - Characteristic
 - Toxicity Characteristic Leaching Procedure (TCLP)
 - 0.2 milligrams per liter
 - Listed
 - commercial chemical products (U151)
 - industrial process waste (waste from mercury cell processes in chlorine production K071, K106)

Hazardous Waste Management

- "Cradle to grave"
- "Full" hazardous waste management
- Universal waste management
 - alternative management standards
 - typically allows "relaxed" requirements for storage, collection and transportation

Waste Disposal

- direct land contamination
- potential to leak and leach mercury
- mercury in landfill gases
 - recent study in Florida detected mercury compounds in landfill gas
 - suggests that landfill gas may be a larger emission source than previously believed

- Waste Disposal
- Hazardous waste disposal (Class I)
 - leachate collection system
 - no landfill gases generated no volatiles or putrescible waste accepted

- Waste Disposal
- Nonhazardous waste disposal (Class III)
 - new Class III landfill criteria requires base liners and leachate collection systems
 - Solid Waste Assessment Test Report
 - 72-86% leaking outside landfill limits none over beneficial use criteria

Waste Disposal

- landfill gases
 - 1993: requirement to collect landfill gas in wells to flare or burn for energy recovery
 - about half of the 275 Class III landfills have landfill gas collection systems

Mercury Flow Trends

- estimated 3 fold increase due to human activities
- no new mercury from mining sources; from secondary sources (recycling)

Mercury Waste Disposal Trends

- Declining
- due to bans in mercury use in consumer products (paints, batteries) and manufacturer source reduction
- still more is deposited on land than emitted in the air

- Mercury Waste-Derived Air Emissions
 - -1.51 tons in 2000
 - includes waste burning, fluorescent tube breakage, incinerators, sewage treatment, cogeneration plants, landfills, etc.

- Mercury Waste-Derived Water Sources
 - 1180 pounds of dental amalgam entering POTWs in 2000 (Mercury Headworks Analysis for 2000)
 - 90% efficient removal at POTWs
 - 118 pounds enter CA waters

- Mercury Waste-Derived Water Sources
 - 22 to 286 pounds from fluorescent light tube breakage in landfills deposited in SF Bay through air emissions (Region 2 RWQCB)
 - legacy waste

Mercury Waste Land Disposal

- 2000: National projected estimate (USEPA)
 - 172.7 tons
- 2000: California projected estimate
 - 20.7 tons
- Includes batteries, lighting, paint, thermometers, thermostats, dental, switches, special paper coatings

Mercury Waste Land Disposal -CA

- Mercury projection from fluorescent lamps
 - 2001: 1.32 tons (NEMA)
 - 2000: 4.9 tons (USEPA)

- Mercury Waste Land Disposal -CA
 - Mercury projection from dental
 - 2000: 2.2 tons amalgam generated for disposal or recycling (Mercury Headworks Analysis for 2000)
 - does not include amalgam entering POTWs
 - 2000: 0.3 tons disposed in CA landfills (USEPA)

- Mercury Waste Land Disposal CA
 Auto Shredder Waste
 - DTSC Auto Shredder Initiative 2001
 - 700,000 automobiles are shredded in CA
 - 2 mercury switches containing 0.5 to 1 gram of mercury
 - potentially 0.75 to 1.5 tons of mercury in auto shredder waste

- Mercury Waste Land Disposal CA
 Auto Shredder Waste
 - 300,000 tons of auto shredder waste
 - does not exceed mercury STLC/TTLC
 - analytical testing shows that 0.93 tons of mercury in auto shredder waste
 - 47% of feedstock are autos
 - 0.4 tons of mercury from autos in auto shredder waste

Conclusion

- fish consumption advisories exist for CA waters
- there are many state and national efforts to reduce, control, and eliminate mercury in the environment
- additional mercury-containing waste entering the environment can be avoided

- Recommendation
- Promote pollution prevention, use of mercury alternatives and recycling by redefining mercury hazardous waste criteria
 - will provide safeguards from additional mercury environmental loading and protect public health and environment

- Report Recommendations
- "List" all mercury-containing waste
- Use of universal waste management standards where applicable
- Class I disposal
- Phased implementation

- Hazardous waste identification options contemplated
 - "listing" mercury containing waste as hazardous waste
 - all
 - intentionally added
 - discarded consumer products with STLC/TTLC
 - develop a new number
 - status quo

- Hazardous waste management options
 - full hazardous waste management
 - universal waste management
 - phased implementation
 - hazardous waste landfill disposal (Class I)
 - nonhazardous and/or hazardous waste landfill disposal (Class I, II, III)

Potential Waste Affected

- automobiles and appliances
- auto shredder waste
- "nonhazardous"fluorescent lamps
- toys, games, novelty items

- mercury-painted debris
- ash
- sewage sludge
- contaminated soil
- non excluded mining
- mercury-containing measuring devices

- Hazardous Waste
 Identification Options
- Hazardous Waste
 Management Options

- all
- intentionally added
- discarded consumer products with STLC/TTLC
- develop a new number

- full hazardous waste management
- UW management
- phased implementation
- Class I Disposal
- Class I, II, III Disposal

- Example #1: Regulate all mercurycontaining waste as hazardous waste
 - could recognize existing exclusions and exemptions (ex. mining, industrial waste waters under CWA)
 - would include any detectable amount of mercury in waste, naturally occurring or intentionally added
 - Class I disposal

- Example #1: Regulate all mercurycontaining waste as hazardous waste
 - Universal waste management standards for consumer products (toys, games, lights, etc.)
 - facilitate collection and recycling
 - flexible (performance standards)
 - waste stream specific (prescriptive standards)

- Example #1: Regulate All Mercury-Containing Waste
 - Phased implementation
 - those wastes where recycling technologies are not available (soils, sludges, ash)
 - allow time for switch from mercury to nonmercury-containing products
 - allow time to develop infrastructure to facilitate collection, storage, recycling

- Example #1: Regulation of All Mercury-Containing Waste
 - Alternative Disposal: use STLC/TTLC to determine disposal options (ex. soils, ash, sludges)
 - Class I, II, or III

- Example #1: Regulation of All Mercury-Containing Waste
 - Disposal at Class I, II or III landfill
 - must be lined with leachate collection system
 - current STLC and TTLC would determine Class I landfill disposal
 - wastes not exceeding STLC or TTLC would have option to dispose at Class I, II or III

- Example #2: Regulate all intentionally added mercury-containing waste
 - would not include naturally occurring mercury in soils, ashes, sludges
 - presumes knowledge on generator whether mercury in the waste originates from naturally occurring sources
 - other options similar to Example #1

- Example #3: Regulate All Mercury-Containing Consumer Products When Discarded
 - toys, games, devices using mercury switches or components (cars, barometers, manometers, appliances)
 - all nonconsumer products discards compared to STLC/TTLC (soils, ash, etc.)

- Example #3: Regulate All Mercury-Containing Consumer Products When Discarded
 - universal waste management standards
 - phased implementation
 - consumers vs. industry
 - time to switch from mercury to nonmercury products
 - time to develop infrastructure

Data and Information Needed

- volumes generated
- waste types impacted
- concentrations of mercury in products and waste
- capacity to treat and dispose
- impact of options contemplated
- your ideas on how to change the threshold